
 579

Quality Assessment of Open Realtime Data for Public
Transportation in the Netherlands

Daniel Steiner1, Hartwig Hochmair2 and Gernot Paulus1
1Carinthia University of Applied Sciences, Villach/Austria · daniel.steiner@edu.fh-kaernten.ac.at
2University of Florida, Fort Lauderdale/USA

Full paper double blind review

Abstract

Modern technologies in the public transportation sector offer a variety of opportunities to
advance solutions for every-day use, such as trip planning. Oftentimes, buses and metro
lines do not adhere to their schedules, e.g. due to traffic congestion or overcrowding. In
such cases, realtime information on the transit system may be used to find faster alternative
routes. This paper analyses the quality of a realtime data set that is the first of its kind in
Europe, since it covers a whole country, i.e. the Netherlands. The data are published in the
General Transit Feed Specification (GTFS)-realtime format as a live-feed. These inter-
operable feeds, if shared with the public by transit agencies, can be used by developers to
write customized applications for public transit users, e.g. through integration with the
OpenTripPlanner (OTP) routing platform.

1 Introduction

Transit users have certain demands on public transportation systems, including fast and
reliable on-schedule services (EL-GENEIDY et al. 2010), which cannot always be provided.
One common problem in this context is, for example, the phenomenon of bus bunching, in
which multiple buses on the same line arrive at a stop concurrently, followed by no subse-
quent buses for a significant amount of time (DESSOUKY et al. 2003). Given such poten-
tially low system reliability values, realtime information can be used to compute faster
routes and decrease waiting time (ROSSETTI & TURITTO 1998). To obtain realtime system
information, many transit agencies employ automatic vehicle location (AVL) and automatic
passenger counter (APC) technologies on their buses. JARIYASUNANT et al. (2012) assessed
the benefits of realtime information on mobile devices for transit trip planning, when com-
pared to routes based on a static schedule. The use of realtime data slightly reduced the
median travel time prediction error from 14.9% to 11.7%.

Providing realtime estimated departure times and live vehicle positions as a realtime feed
requires significant resources for system operation and management. This issue deters
many agencies from allocating such realtime feeds for open access (ROUSH 2012). Several
transit agencies in the US already provide such live feeds, however, realtime data have so
far only been available for two European regions. OVapi (accessible at http://gtfs.ovapi.nl/)
introduced the access to the realtime feeds for buses from different transit agencies in the
Netherlands at the end of January 2014, using the GTFS (General Transit Feed Specifi-

GI_Forum ‒ Journal for Geographic Information Science, 1-2015.
© Herbert Wichmann Verlag, VDE VERLAG GMBH, Berlin/Offenbach. ISBN 978-3-87907-558-4.
© ÖAW Verlag, Wien. ISSN 2308-1708, doi:10.1553/giscience2015s579.

D. Steiner, H. Hochmair and G. Paulus 580

cation) realtime format. This format can be integrated with the open source software Open-
TripPlanner (OTP). EMT, the public bus company of Madrid, representing the second re-
gion, provides realtime bus stop delays in a different open data format. Since OVapi deliv-
ers data in the widely accepted GTFS-realtime feed format, and their data covers a larger
geographic area than Madrid, this paper focuses on the data quality evaluation of the OVapi
real time information. Among the several commonly used measures of geodata quality, this
paper analyses data completeness and temporal accuracy of the realtime feeds. OTP will be
used to illustrate the effect of GTFS-realtime information on selected computed bus routes.

2 Realtime Public Transit Data

2.1 Availability

In 2011, when the GTFS-realtime format was established, several cities in the US and
Europe (i.e. Boston, Portland, San Diego, San Francisco, Madrid, and Turin) were invited
by Google to deliver their realtime data to Google Maps for integration into Google’s mul-
timodal route planner (ROUSH 2012). For Turin these realtime feeds were not directly
shared with the public in a downloadable form, whereas the public bus company EMT
Madrid provides realtime bus stop delays as open data. For other European cities, such as
Linz or Vienna, tracked realtime vehicle positions and estimated vehicle departure and
arrival times are integrated in the proprietary routing engine of the transit agencies. Trip
computations are also published as a Web service that can be called from within other ap-
plications through the API. However, it is not (yet) possible to download the realtime in-
formation of the entire network at a given time, which would be necessary for building
customized routing applications. Thus, in Europe only OVapi provides Open Access to
GTFS-realtime data so far, whereas it is already provided by several US transit agencies,
such as BART (Oakland, CA), TriMet (Oregon, WA), or MARTA BUS (Atlanta, GA).

2.2 Public Transit Data Standards

In addition to GTFS-realtime, which can already be considered a worldwide de-facto indus-
try standard, public transit standards are also defined at the European or national (e.g. Ger-
many) level. These include SIRI for the EU, NextBus for the US and Canada, or VDV
Interfaces 353/354 for Germany. In the original, non-realtime GTFS standard each static
GTFS feed consists of a set of comma separated value (CSV) files, which are compressed
in a ZIP package and linked with each other through relation IDs. The GTFS-realtime
extension currently supports three types of realtime information:

 VehiclePositions: information about the vehicles including current location.
 Trip updates: delays, cancellations and changed routes.
 Service alerts: temporarily moved stops, unforeseen events affecting a station, route,

or the entire network.

Updates of each type are provided in separate feeds, which are served via HTTP. The three
types are stored in so-called Protocol Buffers (PB). Advanced routing engines can integrate
both static and realtime GTFS data.

Quality Assessment of Open Realtime Data for Public Transportation 581

The data in Fig. 1 (left) shows part of an extracted GTFS-realtime ‘VehiclePositions’
message. It provides information about a vehicle driving a specific trip on a particular date
(first group of lines). The position is stored as geographic latitude and longitude (second
group). In the third group, the current_status property describes whether the transit vehicle
is driving towards the next stop (“IN_TRANSIT_TO”) or is at a stop (“STOPPED_AT”).
The timestamp shows when the position was recorded, expressed as Unix epoch time.

In a ‘TripUpdate’ message (Fig. 1, right) each trip consists of a start block showing trip id
and start date. This is followed by a sequence of trip updates for all stops along that trip
with arrival and departure delay information. A negative value means early arrival or depar-
ture. In analysed OVapi datasets many of the delay slots for stops are left empty, or filled
with questionable values, which will be addressed in more detail further below. The OTP is
capable of considering these future delay estimations when calculating a trip. In the data
example below, delay information is truncated after one stop.

trip {
 trip_id: "10543436"
 start_date: "20140414"
 schedule_relationship: SCHEDULED
 1003: "\n\017QBUZZ:d003:1049"
}
position {
 latitude: 52.74404
 longitude: 6.880617
}
current_stop_sequence: 25
current_status: IN_TRANSIT_TO
timestamp: 1397492208
stop_id: "118120"
vehicle {
 id: "QBUZZ:3003"
 label: "3003"
 1003: "\b\001\022\024Mercedes-Benz Citaro"
}

trip {
 trip_id: "10108181"
 start_date: "20140425"
 schedule_relationship: SCHEDULED
 1003: "\n\fVTN:22:22047"
}
stop_time_update {
 stop_sequence: 1
 arrival {
 delay: -185
 time: 1398440035
 }
 departure {
 delay: 0
 time: 1398440220
 }
 stop_id: "28033"
}
...

Fig. 1: GTFS-realtime ‘VehiclePositions’ message (left) and ‘TripUpdate’ message (right)

3 Realtime Data for the Netherlands Test Case

Realtime live-feeds are continuously updated at a certain time interval. Both, the TripUp-
dates and the VehiclePositions messages need to be decoded to make them readable as
objects in the Java programming environment. In our study we use downloaded Vehicle-
Positions files over a period of 13 hours to derive ground truth positions of transit vehicles,
and to compute ideal (fastest) routes retrospectively, based on these positions. Further, we
use TripUpdate files that were downloaded for the same time period to simulate different
levels of network delay knowledge the traveller has when planning a route. The compressed
information in the protocol buffer file was accessed using Java classes (generated using
Google’s Protocol Buffers compiler and the agency’s gtfs-realtime.proto file – accessible at
http://gtfs.ovapi.nl) to decode the realtime feed, and was afterwards stored in a spatial data-
base. We used a PostgreSQL database with a PostGIS extension for spatial queries. The
data structures from the GTFS feed and the protocol buffer messages are used to create

D. Steiner, H. Hochmair and G. Paulus 582

tables that store the static schedule information with its associated geographic information,
as well as vehicle positions and trip updates data for retrospective testing purposes.

VehiclePositions data messages were collected in 10-second intervals for May 28th 2014,
from 7:00 am until 8:00 pm local Dutch time. An example of a compiled sequence of vehi-
cle positions for a single vehicle, based on multiple downloaded VehiclePositions protocol
buffer messages, is provided in Table 1. It shows how the vehicle progresses from one stop
to another, as indicated by the stop sequence field. Assuming that the VehiclePositions data
files provide accurate corrections to scheduled arrival and departure times, the modified
timetable allows reconstructing the exact time profile of a trip after the fact. Such knowl-
edge would allow one to retrospectively compute the ideal (e.g. fastest) route between a trip
origin and destination.

Table 1: Extract of a single trip from VehiclePositions table

TRIP_ID
CURR_

STOP_SEQ
CURR_

STATUS
STOP

ID
TIMESTMP X Y

8775680 15 IN_TRANSIT_TO 46529 2014-05-28 13:01:02-04 4.868515 52.302048

8775680 16 STOPPED_AT 0 2014-05-28 13:01:12-04 4.87308 52.302795

8775680 16 STOPPED_AT 0 2014-05-28 13:01:22-04 4.87308 52.302795

8775680 16 STOPPED_AT 0 2014-05-28 13:01:32-04 4.87308 52.302795

8775680 16 IN_TRANSIT_TO 42461 2014-05-28 13:01:42-04 4.87308 52.302795

Next, delay information collected from TripUpdates messages was used to create a modi-
fied timetable based on the original GTFS static timetable. These delay predictions, which
are stored in a database table as well, can be compared to observed delays, derived from
VehiclePositions protocol buffer messages. Thus, the accuracy of TripUpdates for upcom-
ing stops along a trip can be assessed. TripUpdates messages were downloaded on May
28th 2014, from 7:00 am until 8:00 pm every 30 seconds. In addition, the static GTFS feed
and the OpenStreetMap (OSM) files for the Netherlands were downloaded for the same day
as well.

Table 2: Summary statistics of collected data

GTFS feed GTFS-realtime feeds

routes 2383 trips in TripUpdate feed from '2014-05-28 03:00:00-04' 10451
trips 713,199 number of trips in TripUpdates 73947
shapes 4,665,512 TripUpdate entries 258,916,245
shapelines 9236 VehiclePositions 16,963,413
stop times 15,962,597 number of trips in VehiclePositions 72612
stops

72256
trips with same trip_id in VehiclePositions and TripUp-
dates

70144

Creation of modified stop_times

trips without gaps 72010
trips complete from first to last stop_sequence 52296

Quality Assessment of Open Realtime Data for Public Transportation 583

Table 2 summarizes the amount of downloaded data for the test period. The TripUpdate
feed for a given time stamp is available for 10451 trips in this example. Vehicle positions
were available for 72612 trips, which is only about 10% of all trips (713,199) within that
time period, revealing data scarcity. During the process of computing modified stop times
using VehiclePositions data, a total of 52296 complete trips were written into the new
modified timetable. This means that information for 7.3% of trips available in the static
timetable was modified in that process. For the rest of the trips, trips in VehiclePositions
files were either incomplete or did not contain coordinate information.

4 Quality Assessment of Realtime Data

4.1 VehiclePositions Data

The aim of collecting VehiclePositions data is to create a modified reference timetable with
observed arrival and departure times reflecting ground truth. The more vehicles publish
their positions, and the more accurate these published positions are, the more accurate and
complete the modified timetable is. If a station along a trip did not contain “STOPPED_
AT” information, this could be because the vehicle did not stop at a station. In this case
arrival and departure times for that stop were interpolated to the nearest recorded vehicle
position of that specific trip, and considered valid data for building the reference dataset. In
other cases, a station was not mentioned along a trip at all (not even through “IN_
TRANSIT_TO”), or the sequence of stops was not in ascending order. Such a situation was
then considered a gap, and the corresponding trip was excluded from further computations.

For the visualization of travel delay patterns, delays were computed as the difference be-
tween original (static) timestamps and timestamps in the reference timetable. Based on this,
average delays were computed for each stop, where such delay information could be de-
rived. This was the case for 41218 stops, out of 72256 total stops in the network. This
means that about 43.0% of stations did not have a single delay value from any of the trips
passing through, showing that OVapi real time VehiclePositions data in its current stage of
implementation is far from complete.

Fig. 2: Distribution of average delay at all affected stops on 05/28/2014

D. Steiner, H. Hochmair and G. Paulus 584

Out of all available average stop delays, 16004 stops (38.8%) had an average delay between
0 and 99 seconds, followed by 15114 stops (36.7%) with an average delay between 100 and
199 seconds (Fig. 2). Average delays were highest between 9am and 10am in the morning,
with another peak in the evening rush hour between 5pm and 6pm.

The map in Fig. 3 is based on average available delay information for individual stops
(shown as beige circles). Average delays were highest in the central parts (around Utrecht)
and the northern parts (around Leeuwarden) of the Netherlands.

Fig. 3: Average delays derived from VehiclePositions feeds

4.2 TripUpdates data

TripUpdates contain estimated delay information for future stops as well as for past stops.
For only 10.4% of all trips, TripUpdate feeds were available, and if so, they were incom-
plete. As an example, Fig. 4 shows the delay information for all stops on a single trip, ex-
tracted from three TripUpdate files at different times, and a single VehiclePositions file.
The trip runs from 13:37 to 14:34. The information of the green line was extracted from the
TripUpdate file at 13:40:31, i.e. after the trip started. This is when this trip was mentioned
for the first time in a TripUpdate file. The purple line refers to delays in the TripUpdate
feed downloaded at 14:00:01, and the blue line to a feed download at 15:00:01, after the
end of the trip. The red line refers to quasi-true delay information extracted from Vehicle-
Positions data. This example demonstrates poor data quality of the TripUpdate feed. That
is, the TripUpdate information is not available until the trip begins, and after that, delay
predictions are only available for about 10 minutes in the future, and set to zero after this.

Quality Assessment of Open Realtime Data for Public Transportation 585

Fig. 4: Observed delays on May, 28th 2014 for VehiclePositions and delay predictions
from TripUpdates

5 Route Analysis

5.1 Routing Software and Scenarios

The OTP is an open-source multi-modal routing planner that considers various transporta-
tion modes, such as bicycle, train, bus, or on foot. Its functionality can be customized with
advanced routing options, e.g. by combining indoor with outdoor routing (WEYRER et al.
2014). For this research, the OTP was used to compare modelled routing results regarding
availability of different levels of information to the traveller at the beginning of a trip and
during a trip. These different levels of information are described in five conceptual scenar-
ios. However, not all of the scenarios could be implemented due to current OTP limitations.
Additionally, any full and comprehensive scenario performance comparison would require
a complete set of VehiclePositions files, which are currently not covered by OVapi data.
Therefore, we are limiting this part to selected representative routes as an initial proof of
concept.

Scenario 1: Print trip on paper, not considering TripUpdates

In the first scenario, a user calculates a trip using the OTP without any delay information
from TripUpdates files. It is assumed that the user prints the route and attempts to exactly
follow the written instructions. If the traveller transfers to the next bus line and misses the
planned bus, he or she has to wait for the following bus on that bus line. For this use case,
the algorithm compares the static arrival and departure times from each bus on the calcu-
lated route to the observed (true) times that are stored in the reference timetable.

Fig. 5 shows a subset of the steps involved in the route computation for scenario 1. The first
14 rows (num_calculation = 1) represent the calculated trip from the REST response using

D. Steiner, H. Hochmair and G. Paulus 586

static stop times from the GTFS feed. In the second phase (num_calculation = 2, from line
15 on), the algorithm again begins at the start point, and compares the static start_time (i.e.
departure time) and end_time (i.e. arrival time) with observed times from the reference
timetable for all segments along the trip. Up to row 25, no bus would have been missed
under the original schedule. However, since trip 11373739 arrived at 11:59:47 (see
end_time column, highlighted) instead of the planned time of 11:59:00, which is also when
the connecting bus departs (not shown in the table), the passenger would have missed this
connecting bus. Therefore, the next scheduled bus (11379754) that departed at 12:00:00
was chosen instead of the planned bus (11372865). Bus 11379754 arrived at 12:09:00 and
the initially computed walking time was added to this (line 26). Despite the delayed trans-
fer, the trip itself, if followed in this manner, would have been about 2 minutes faster than
the initial calculation, due to the earlier than planned arrival of the bus on the last segment
(10389450).

Fig. 5: Route example from scenario 1

Scenario 2: Print trip on paper, considering TripUpdates: The same scenario as before,
except that the initial calculation considers TripUpdates available at the time of planning.

Scenario 3: Smartphone without realtime route computation: The passenger has a smart-
phone, which is used for the initial route calculation. If the traveller misses a connecting
bus the smartphone is used to re-calculate a route from the current position.

Scenario 4: Smartphone including realtime route computation: The traveller’s smartphone
has access to the TripUpdate feed, and calculates the fastest route when passing by a stop
along the planned trip, using the most recently downloaded TripUpdates file. In the case of
a new faster route, e.g. due to delays, the application suggests the new route to the user.

Scenario 5: Optimal route calculation using modified GTFS feed: Although not possible
for a traveller during navigation, this scenario computes the fastest route that would have
been computed by the passenger if he or she had all the true future delay information while
planning the trip. This scenario uses the reference timetable based on VehiclePositions files.
The modified stop_times (described in section 4.1) were exported into the GTFS feed,
which was used to create the routing graph in the OpenTripPlanner. In this scenario, the

Quality Assessment of Open Realtime Data for Public Transportation 587

initial route calculation (num_calculation = 1) already includes the quasi-true arrival and
departure times.

The route request is the same for all scenarios. However, the execution of the route search
differs by the used routing graph, the use of TripUpdates, and the use of recursive resub-
missions of the trip request along the trip. Scenarios 3 and 4 (simulating a smartphone)
could not be executed within the current OTP framework because of the following issue: If,
according to the corrected reference table, a bus departs later due to a delay, the smartphone
is supposed to consider that delayed departure time in its new route request. However, the
OTP routing engine cannot currently handle such dynamic delay from the reference table,
since it only has access to the timetable from the static GTFS feed.

5.2 Route Example

Regarding the original idea to statistically evaluate the effect of the different achievable
scenarios, we randomly selected 45 origin-destination pairs in the northern part of the study
area. However, due to the discovered data scarcity, a comprehensive assessment was not
possible. For example, each of the 45 computed routes for scenario 2 (which considers
available TripUpdates at the beginning of the trip) included several different bus lines
(trips), giving a total of 391 trips. Only 23 out of these 391 single trips have realtime delay
predictions from TripUpdates. Out of these, only 4 trips actually had a future delay, while
all others had a delay of zero for future stops. Thus all routes in scenario 1 and 2 were iden-
tical. As opposed to this, some differences could be found between scenario 1 and 5. Fig. 6
shows the routes obtained for scenarios 1 (light grey) and 5 (dark grey) for the same origin
and destination. The optimal (fastest) route would have saved 24 minutes of traveling.

Fig. 6: Routes generated for scenario 1 and 5

D. Steiner, H. Hochmair and G. Paulus 588

6 Conclusions

This study analyzed the data quality of realtime public transit data provided as GTFS-
realtime feeds for the Netherlands. Results show that at least up to May 2014 the data quali-
ty was not satisfactory, and that a large percentage of vehicle position and trip delay data
was missing, which would be necessary for reliable realtime trip planning applications. One
of the goals was to analyze user benefits of realtime information for trip planning, but,
besides data scarcity, this was impossible due to OTP data handling. For example, the inte-
gration of VehiclePositions data into the OTP for scenario 5 caused problems by sometimes
returning sub-optimal routes. Further, the assessment of usability for smartphone users with
repeated computations along the trip (scenario 3 and 4) would require a modification of the
OTP code. In the near future, we expect to see more transit agencies sharing realtime in-
formation, and their data should also be evaluated in order to assure positive effects on
reliable multimodal route planning results.

Acknowledgements

This research was supported in part by a research grant awarded to the author Daniel Stei-
ner by the Austrian Marshall Plan Foundation.

References

DESSOUKY, M., HALL, R., ZHANG, L. & SINGH, A. (2003), Real-time control of buses for
schedule coordination at a terminal. Transportation Research Part A: Policy and
Practice, 37 (2), 145-164.

EL-GENEIDY, A. M., HORNING, J. & KRIZEK, K. J. (2010), Analyzing transit service relia-
bility using detailed data from automatic vehicular locator systems. Journal of Ad-
vanced Transportation, 45 (1), 66-79.

JARIYASUNANT, J., CARREL, A., EKAMBARAM, V., GAKER, D., KOTE, T., SENGUPTA, R. &
WALKER, J. L. (2012), The Quantified Traveler: Using personal travel data to promote
sustainable transport behavior. Proceedings of Transportation Research Board ‒ 91st
Annual Meeting, Washington, D.C., Jan 22-26, 2012, Transportation Research Board of
the National Academies.

ROSSETTI, M. D. & TURITTO, T. (1998), Comparing static and dynamic threshold based
control strategies. Transportation Research Part A: Policy and Practice, 32 (8), 607-620.

ROUSH, W. (2012), Google Transit: How (and Why) the Search Giant is Remapping Public
Transportation. http://www.xconomy.com/san-francisco/2012/02/21/google-transit-a-
search-giant-remaps-public-transportation/5/ (4/13/2015).

WEYRER, T. N., HOCHMAIR, H. H., & PAULUS, G. (2014), Intermodal Door-to-Door Rout-
ing for People with Physical Impairments in a Web-based Open Source Platform. Trans-
portation Research Record: Journal of the Transportation Research Board, 2469,
108-119.

